

The book was found

Introduction To Partial Differential Equations (Undergraduate Texts In Mathematics)

Synopsis

This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.

Book Information

Series: Undergraduate Texts in Mathematics

Hardcover: 636 pages

Publisher: Springer; 1st ed. 2014, Corr. 3rd printing 2016 edition (September 14, 2016)

Language: English

ISBN-10: 3319020986

ISBN-13: 978-3319020983

Product Dimensions: 7 x 1.4 x 10 inches

Shipping Weight: 3 pounds (View shipping rates and policies)

Average Customer Review: 3.9 out of 5 stars 4 customer reviews

Best Sellers Rank: #486,410 in Books (See Top 100 in Books) #26 in Books > Science & Math > Mathematics > Infinity #276 in Books > Science & Math > Mathematics > Applied > Differential Equations #382 in Books > Science & Math > Mathematics > Mathematical

Customer Reviews

“This textbook furnishes the basis for a 1-year introductory course in partial differential equations for advanced undergraduates. The book is written with great care and great attention to detail throughout. At the end of every chapter there are well-chosen exercises that genuinely add depth to the concepts treated in the text. This book can be wholeheartedly recommended.” (M. Kunzinger, *Monatshefte für Mathematik*, Vol. 181, 2016)

“This book easily covers all the material one might want in a course aimed at first-time students of PDEs. I recommend this one highly: It provides the best first-course introduction to a vast and ever-more relevant and active area. Students, and perhaps instructors too, will learn much from it. If they wish to go beyond the material taught in a first course, this text will prepare them better than any other I know.” (SIAM Review, Vol. 56 (3), September, 2014)

“Introduction to Partial Differential Equations is a complete, well-written textbook for upper-level undergraduates and graduate students. Olver thoroughly covers the topic in a readable format and includes plenty of examples and exercises, ranging from the typical to independent projects and computer projects. Instructors teaching an introduction to partial differential equations course will want to consider this textbook as a viable option for their students. Summing Up: Highly Recommended. Upper-division undergraduates, graduate students, and faculty.” (S. L. Sullivan, *Choice*, Vol. 51 (11), July, 2014)

“This introduction to partial differential equations is addressed to advanced undergraduates or graduate students. . an imposing book that includes plenty of material for two semesters even at the graduate level. The author succeeds at maintaining a good balance between solution methods, mathematical rigor, and applications. With appropriate selection of topics this could serve for a one semester introductory course for undergraduates or a full year course for graduate students. the author has clearly taken pains to make it readable and accessible.” (William J. Satzer, *MAA Reviews*, January, 2014)

This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include

straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solitons, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements. Peter J. Olver is professor of mathematics at the University of Minnesota. His wide-ranging research interests are centered on the development of symmetry-based methods for differential equations and their manifold applications. He is the author of over 130 papers published in major scientific research journals as well as 4 other books, including the definitive Springer graduate text, Applications of Lie Groups to Differential Equations, and another undergraduate text, Applied Linear Algebra. A Solutions Manual for instructors is available by clicking on "Selected Solutions Manual" under the Additional Information section on the right-hand side of this page.

Excellent for Undergraduate Students to begin an advanced course in the subject.

In general this is a perfect book for a first course in PDEs. Full of great insight, intuitions, examples etc. So many books launch into excruciating detail, leaving the student to see the forest that all the trees produces. A hundred times he tells us "what we are doing here is" and it helps so much e.g. Greens functions. For those aficionados of the bondage and discipline style of math, you would need to go elsewhere. But perhaps this book would help you to get the overall picture first, and that is so useful for making rapid progress. Correction: He now has selected solutions available on his web site. Thank you!!!! I can now recommend this book unreservedly.

Good book!

No solutions provided.

[Download to continue reading...](#)

Applied Partial Differential Equations with Fourier Series and Boundary Value Problems (5th Edition) (Featured Titles for Partial Differential Equations) Introduction to Partial Differential Equations (Undergraduate Texts in Mathematics) Numerical Partial Differential Equations: Conservation Laws and Elliptic Equations (Texts in Applied Mathematics) (v. 33) Partial Differential Equations of Mathematical Physics and Integral Equations (Dover Books on Mathematics) [Differential Equations, Dynamical Systems, and an Introduction to Chaos [DIFFERENTIAL EQUATIONS, DYNAMICAL SYSTEMS, AND AN INTRODUCTION TO CHAOS BY Hirsch, Morris W. (Author) Mar-26-2012] By Hirsch, Morris W. (Author) [2012) [Paperback] Numerical Partial Differential Equations: Finite Difference Methods (Texts in Applied Mathematics) Partial Differential Equations with Numerical Methods (Texts in Applied Mathematics) Differential Equations and Their Applications: An Introduction to Applied Mathematics (Texts in Applied Mathematics) (v. 11) Differential Equations and Boundary Value Problems: Computing and Modeling (5th Edition) (Edwards/Penney/Calvis Differential Equations) Fundamentals of Differential Equations (8th Edition) (Featured Titles for Differential Equations) Differential Equations: Computing and Modeling (5th Edition) (Edwards/Penney/Calvis Differential Equations) Student Solutions Manual to accompany Boyce Elementary Differential Equations 10e & Elementary Differential Equations with Boundary Value Problems 10e Student's Solutions Manual for Fundamentals of Differential Equations 8e and Fundamentals of Differential Equations and Boundary Value Problems 6e Partial Differential Equations for Scientists and Engineers (Dover Books on Mathematics) Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (Classics in Applied Mathematics) Numerical Solution of Partial Differential Equations: Finite Difference Methods (Oxford Applied Mathematics and Computing Science Series) Hilbert Space Methods in Partial Differential Equations (Dover Books on Mathematics) Numerical Partial Differential Equations in Finance Explained: An Introduction to Computational Finance (Financial Engineering Explained) Partial Differential Equations: An Introduction, 2nd Edition First Steps in Differential Geometry: Riemannian, Contact, Symplectic (Undergraduate Texts in Mathematics)

[Contact Us](#)

[DMCA](#)

[Privacy](#)

FAQ & Help